<-
summary_extracted |>
sp500 ::filter(date >= "2015-01-05" & date <="2015-01-30") |>
dplyr::arrange(date) |>
dplyr::mutate(week = paste0("W", strftime(date, format = "%V"))) |>
dplyr::select(-adj_close, -volume) |>
dplyrgt(
rowname_col = "date",
groupname_col = "week"
|>
) summary_rows(
groups = everything(),
columns = c(open, high, low, close),
fns = list(
min = ~min(.),
max = ~max(.),
avg = ~mean(.)
),|>
) extract_summary()
summary_extracted
$summary_df_data_list
$summary_df_data_list$W02
# A tibble: 3 × 9
group_id row_id rowname date open high low close week
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 W02 min min NA 2006. 2030. 1992. 2003. NA
2 W02 max max NA 2063. 2064. 2038. 2062. NA
3 W02 avg avg NA 2035. 2049. 2017. 2031. NA
$summary_df_data_list$W03
# A tibble: 3 × 9
group_id row_id rowname date open high low close week
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 W03 min min NA 1992. 2018. 1988. 1993. NA
2 W03 max max NA 2046. 2057. 2023. 2028. NA
3 W03 avg avg NA 2020. 2033. 2000. 2015. NA
$summary_df_data_list$W04
# A tibble: 3 × 9
group_id row_id rowname date open high low close week
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 W04 min min NA 2020. 2029. 2004. 2023. NA
2 W04 max max NA 2063. 2065. 2051. 2063. NA
3 W04 avg avg NA 2035. 2049. 2023. 2042. NA
$summary_df_data_list$W05
# A tibble: 3 × 9
group_id row_id rowname date open high low close week
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 W05 min min NA 2002. 2023. 1989. 1995. NA
2 W05 max max NA 2050. 2058. 2041. 2057. NA
3 W05 avg avg NA 2030. 2039. 2009. 2021. NA